610 research outputs found

    Adsorbate Electric Fields on a Cryogenic Atom Chip

    Full text link
    We investigate the behaviour of electric fields originating from adsorbates deposited on a cryogenic atom chip as it is cooled from room temperature to cryogenic temperature. Using Rydberg electromagnetically induced transparency we measure the field strength versus distance from a 1 mm square of YBCO patterned onto a YSZ chip substrate. We find a localized and stable dipole field at room temperature and attribute it to a saturated layer of chemically adsorbed rubidium atoms on the YBCO. As the chip is cooled towards 83 K we observe a change in sign of the electric field as well as a transition from a localized to a delocalized dipole density. We relate these changes to the onset of physisorption on the chip surface when the van der Waals attraction overcomes the thermal desorption mechanisms. Our findings suggest that, through careful selection of substrate materials, it may be possible to reduce the electric fields caused by atomic adsorption on chips, opening up experiments to controlled Rydberg-surface coupling schemes.Comment: 5 pages, 4 figure

    Newer Opium Antagonists, Their Actions and Use

    Get PDF

    Design of magnetic traps for neutral atoms with vortices in type-II superconducting micro-structures

    Full text link
    We design magnetic traps for atoms based on the average magnetic field of vortices induced in a type-II superconducting thin film. This magnetic field is the critical ingredient of the demonstrated vortex-based atom traps, which operate without transport current. We use Bean's critical-state method to model the vortex field through mesoscopic supercurrents induced in the thin strip. The resulting inhomogeneous magnetic fields are studied in detail and compared to those generated by multiple normally-conducting wires with transport currents. Various vortex patterns can be obtained by programming different loading-field and transport current sequences. These variable magnetic fields are employed to make versatile trapping potentials.Comment: 11 pages, 14 figure

    Monitoring currents in cold-atom circuits

    Full text link
    Complex circuits of cold atoms can be exploited to devise new protocols for the diagnostics of cold-atoms systems. Specifically, we study the quench dynamics of a condensate confined in a ring-shaped potential coupled with a rectilinear guide of finite size. We find that the dynamics of the atoms inside the guide is distinctive of the states with different winding numbers in the ring condensate. We also observe that the depletion of the density, localized around the tunneling region of the ring condensate, can decay in a pair of excitations experiencing a Sagnac effect. In our approach, the current states of the condensate in the ring can be read out by inspection of the rectilinear guide only, leaving the ring condensate minimally affected by the measurement. We believe that our results set the basis for definition of new quantum rotation sensors. At the same time, our scheme can be employed to explore fundamental questions involving dynamics of bosonic condensates.Comment: Figures are enlarged. Section IV is added. Journal reference adde

    10 GeV dark matter candidates and cosmic-ray antiprotons

    Full text link
    Recent measurements performed with some direct dark matter detection experiments, e.g. CDMS-II and CoGENT (after DAMA/LIBRA), have unveiled a few events compatible with weakly interacting massive particles. The preferred mass range is around 10 GeV, with a quite large spin-independent cross section of 104310^{-43}-1041cm210^{-41}\,{\rm cm^2}. In this paper, we recall that a light dark matter particle with dominant couplings to quarks should also generate cosmic-ray antiprotons. Taking advantage of recent works constraining the Galactic dark matter mass profile on the one hand and on cosmic-ray propagation on the other hand, we point out that considering a thermal annihilation cross section for such low mass candidates very likely results in an antiproton flux in tension with the current data, which should be taken into account in subsequent studies.Comment: 4 pages, 2 figures. V2: minor changes to match the published versio

    Superfluid qubit systems with ring shaped optical lattices

    Full text link
    We study an experimentally feasible qubit system employing neutral atomic currents. Our system is based on bosonic cold atoms trapped in ring-shaped optical lattice potentials. The lattice makes the system strictly one dimensional and it provides the infrastructure to realize a tunable ring-ring interaction. Our implementation combines the low decoherence rates of of neutral cold atoms systems, overcoming single site addressing, with the robustness of topologically protected solid state Josephson flux qubits. Characteristic fluctuations in the magnetic fields affecting Josephson junction based flux qubits are expected to be minimized employing neutral atoms as flux carriers. By breaking the Galilean invariance we demonstrate how atomic currents through the lattice provide a implementation of a qubit. This is realized either by artificially creating a phase slip in a single ring, or by tunnel coupling of two homogeneous ring lattices. The single qubit infrastructure is experimentally investigated with tailored optical potentials. Indeed, we have experimentally realized scaled ring-lattice potentials that could host, in principle, n10n\sim 10 of such ring-qubits, arranged in a stack configuration, along the laser beam propagation axis. An experimentally viable scheme of the two-ring-qubit is discussed, as well. Based on our analysis, we provide protocols to initialize, address, and read-out the qubit.Comment: 14 revtex4-1 pages, 7 figs; to be published in Scientific Report

    The political occupation of sacred space. The Ptolemaic royal household on Cyprus

    Get PDF

    Programmable trap geometries with superconducting atom chips

    Full text link
    We employ the hysteretic behavior of a superconducting thin film in the remanent state to generate different traps and flexible magnetic potentials for ultra-cold atoms. The trap geometry can be programmed by externally applied fields. This new approach for atom-optics is demonstrated by three different trap types realized on a single micro-structure: a Z-type trap, a double trap and a bias field free trap. Our studies show that superconductors in the remanent state provide a new versatile platform for atom-optics and applications in ultra-cold quantum gases

    The Integrated Polarization of Spiral Galaxy Disks

    Full text link
    We present integrated polarization properties of nearby spiral galaxies at 4.8 GHz, and models for the integrated polarization of spiral galaxy disks as a function of inclination. Spiral galaxies in our sample have observed integrated fractional polarization in the range < 1% to 17.6%. At inclinations less than 50 degrees, the fractional polarization depends mostly on the ratio of random to regular magnetic field strength. At higher inclinations, Faraday depolarization associated with the regular magnetic field becomes more important. The observed degree of polarization is lower (<4%) for more luminous galaxies, in particular those with L_{4.8} > 2 x 10^{21} W/Hz. The polarization angle of the integrated emission is aligned with the apparent minor axis of the disk for galaxies without a bar. In our axially symmetric models, the polarization angle of the integrated emission is independent of wavelength. Simulated distributions of fractional polarization for randomly oriented spiral galaxies at 4.8 GHz and 1.4 GHz are presented. We conclude that polarization measurements, e.g. with the SKA, of unresolved spiral galaxies allow statistical studies of the magnetic field in disk galaxies using large samples in the local universe and at high redshift. As these galaxies behave as idealized background sources without internal Faraday rotation, they can be used to detect large-scale magnetic fields in the intergalactic medium.Comment: 13 pages, 6 figures; Accepted for publication in The Astrophysical Journa

    Microoptical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits

    Get PDF
    We experimentally demonstrate novel structures for the realisation of registers of atomic qubits: We trap neutral atoms in one and two-dimensional arrays of far-detuned dipole traps obtained by focusing a red-detuned laser beam with a microfabricated array of microlenses. We are able to selectively address individual trap sites due to their large lateral separation of 125 mu m. We initialize and read out different internal states for the individual sites. We also create two interleaved sets of trap arrays with adjustable separation, as required for many proposed implementations of quantum gate operations
    corecore